Tuesday, 12 May 2015

Earth changes

Climate change will shake the Earth



25 February, 2012

The idea that a changing climate can persuade the ground to shake, volcanoes to rumble and tsunamis to crash on to unsuspecting coastlines seems, at first, to be bordering on the insane. How can what happens in the thin envelope of gas that shrouds and protects our world possibly influence the potentially Earth-shattering processes that operate deep beneath the surface? The fact that it does reflects a failure of our imagination and a limited understanding of the manner in which the different physical components of our planet – the atmosphere, the oceans, and the solid Earth, or geosphere – intertwine and interact.

If we think about climate change at all, most of us do so in a very simplistic way: so, the weather might get a bit warmer; floods and droughts may become more of a problem and sea levels will slowly creep upwards. Evidence reveals, however, that our planet is an almost unimaginably complicated beast, which reacts to a dramatically changing climate in all manner of different ways; a few – like the aforementioned – straightforward and predictable; some surprising and others downright implausible. Into the latter category fall the manifold responses of the geosphere.

The world we inhabit has an outer rind that is extraordinarily sensitive to change. While the Earth's crust may seem safe and secure, the geological calamities that happen with alarming regularity confirm that this is not the case. Here in the UK, we only have to go back a couple years to April 2010, when the word on everyone's lips was Eyjafjallajökull – the ice-covered Icelandic volcano that brought UK and European air traffic to a grinding halt. Less than a year ago, our planet's ability to shock and awe headed the news once again as the east coast of Japan was bludgeoned by a cataclysmic combination of megaquake and tsunami, resulting – at a quarter of a trillion dollars or so – in the biggest natural-catastrophe bill ever.

In the light of such events, it somehow seems appropriate to imagine the Earth beneath our feet as a slumbering giant that tosses and turns periodically in response to various pokes and prods. Mostly, these are supplied by the stresses and strains associated with the eternal dance of a dozen or so rocky tectonic plates across the face of our world; a sedate waltz that proceeds at about the speed that fingernails grow. Changes in the environment too, however, have a key role to play in waking the giant, as growing numbers of geological studies targeting our post-ice age world have disclosed.

Between about 20,000 and 5,000 years ago, our planet underwent an astonishing climatic transformation. Over the course of this period, it flipped from the frigid wasteland of deepest and darkest ice age to the – broadly speaking – balmy, temperate world upon which our civilisation has developed and thrived. During this extraordinarily dynamic episode, as the immense ice sheets melted and colossal volumes of water were decanted back into the oceans, the pressures acting on the solid Earth also underwent massive change. In response, the crust bounced and bent, rocking our planet with a resurgence in volcanic activity, a proliferation of seismic shocks and burgeoning giant landslides.

The most spectacular geological effects were reserved for high latitudes. Here, the crust across much of northern Europe and North America had been forced down by hundreds of metres and held at bay for tens of thousands of years beneath the weight of sheets of ice 20 times thicker than the height of the London Eye. As the ice dissipated in soaring temperatures, the crust popped back up like a coiled spring released, at the same time tearing open major faults and triggering great earthquakes in places where they are unheard of today. Even now, the crust underpinning those parts of Europe and North America formerly imprisoned beneath the great continental ice sheets continues to rise – albeit at a far more sedate rate.


As last year's events in Japan most ably demonstrated, when the ground shakes violently beneath the sea, a tsunami may not be far behind. These unstoppable walls of water are hardly a surprise when they happen within the so-called ring of fire that encompasses the Pacific basin but in the more tectonically benign North Atlantic their manifestation could reasonably be regarded as a bit of a shock. Nonetheless, there is plenty of good, hard evidence that this was the case during post-glacial times. Trapped within the thick layers of peat that pass for soil on Shetland – the UK's northernmost outpost – are intrusions of sand that testify to the inland penetration of three tsunamis during the last 10,000 years.

Volcanic blasts too can be added to the portfolio of postglacial geological pandemonium; the warming climate being greeted by an unprecedented fiery outburst that wracked Iceland as its frozen carapace dwindled, and against which the recent ashy ejaculation from the island's most unpronounceable volcano pales.

The huge environmental changes that accompanied the rapid post-glacial warming of our world were not confined to the top and bottom of the planet. All that meltwater had to go somewhere, and as the ice sheets dwindled, so the oceans grew. An astounding 52m cubic kilometres of water was sucked from the oceans to form the ice sheets, causing sea levels to plummet by about 130 metres – the height of the Wembley stadium arch. As the ice sheets melted so this gigantic volume of water was returned, bending the crust around the margins of the ocean basins under the enormous added weight, and provoking volcanoes in the vicinity to erupt and faults to rupture, bringing geological mayhem to regions remote from the ice's polar fastnesses.

The breathtaking response of the geosphere as the great ice sheets crumbled might be considered as providing little more than an intriguing insight into the prehistoric workings of our world, were it not for the fact that our planet is once again in the throes an extraordinary climatic transformation – this time brought about by human activities. Clearly, the Earth of the early 21st century bears little resemblance to the frozen world of 20,000 years ago. Today, there are no great continental ice sheets to dispose of, while the ocean basins are already pretty much topped up. On the other hand, climate change projections repeatedly support the thesis that global average temperatures could rise at least as rapidly in the course of the next century or so as during post-glacial times, reaching levels at high latitudes capable of driving catastrophic breakup of polar ice sheets as thick as those that once covered much of Europe and North America. Could it be then, that if we continue to allow greenhouse gas emissions to rise unchecked and fuel serious warming, our planet's crust will begin to toss and turn once again?

The signs are that this is already happening. In the detached US state of Alaska, where climate change has propelled temperatures upwards by more than 3C in the last half century, the glaciers are melting at a staggering rate, some losing up to 1km in thickness in the last 100 years. The reduction in weight on the crust beneath is allowing faults contained therein to slide more easily, promoting increased earthquake activity in recent decades. The permafrost that helps hold the state's mountain peaks together is also thawing rapidly, leading to a rise in the number of giant rock and ice avalanches. In fact, in mountainous areas around the world, landslide activity is on the up; a reaction both to a general ramping-up of global temperatures and to the increasingly frequent summer heatwaves.

Whether or not Alaska proves to be the "canary in the cage" – the geological shenanigans there heralding far worse to come – depends largely upon the degree to which we are successful in reducing the ballooning greenhouse gas burden arising from our civilisation's increasingly polluting activities, thereby keeping rising global temperatures to a couple of degrees centigrade at most. So far, it has to be said, there is little cause for optimism, emissions rocketing by almost 6% in 2010 when the world economy continued to bump along the bottom. Furthermore, the failure to make any real progress on emissions control at last December's Durban climate conference ensures that the outlook is bleak. Our response to accelerating climate change continues to be consistently asymmetric, in the sense that it is far below the level that the science says is needed if we are to have any chance of avoiding the all-pervasive devastating consequences.
So what – geologically speaking – can we look forward to if we continue to pump out greenhouse gases at the current hell-for-leather rate? With resulting global average temperatures likely to be several degrees higher by this century's end, we could almost certainly say an eventual goodbye to the Greenland ice sheet, and probably that covering West Antarctica too, committing us – ultimately – to a 10-metre or more hike in sea levels.

GPS measurements reveal that the crust beneath the Greenland ice sheet is already rebounding in response to rapid melting, providing the potential – according to researchers – for future earthquakes, as faults beneath the ice are relieved of their confining load. The possibility exists that these could trigger submarine landslides spawning tsunamis capable of threatening North Atlantic coastlines. Eastern Iceland is bouncing back too as its Vatnajökull ice cap fades away. When and if it vanishes entirely, new research predicts a lively response from the volcanoes currently residing beneath. A dramatic elevation in landslide activity would be inevitable in the Andes, Himalayas, European Alps and elsewhere, as the ice and permafrost that sustains many mountain faces melts and thaws.

Across the world, as sea levels climb remorselessly, the load-related bending of the crust around the margins of the ocean basins might – in time – act to sufficiently "unclamp" coastal faults such as California's San Andreas, allowing them to move more easily; at the same time acting to squeeze magma out of susceptible volcanoes that are primed and ready to blow.

The bottom line is that through our climate-changing activities we are loading the dice in favour of escalating geological havoc at a time when we can most do without it. Unless there is a dramatic and completely unexpected turnaround in the way in which the human race manages itself and the planet, then long-term prospects for our civilisation look increasingly grim. At a time when an additional 220,000 people are lining up at the global soup kitchen each and every night; when energy, water and food resources are coming under ever-growing pressure, and when the debilitating effects of anthropogenic climate change are insinuating themselves increasingly into every nook and cranny of our world and our lives, the last thing we need is for the dozing subterranean giant to awaken.

Bill McGuire is professor of geophysical and climate hazards at University College London. Waking the Giant: How a Changing Climate Triggers Earthquakes, Tsunamis and Volcanoes is published by Oxford University Press.


More Fatal Earthquakes to Come, Geologists Warn

"Climate change may play a critical role in triggering certain faults in certain places where they could kill a hell of a lot of people,” says Professor McGuire. Some of his colleagues suspect the process may already have started.


Here, both Guy McPherson and Paul Beckworth talk about the connections between earthquakes and climate change in the context of the recent quake in Nepal


Rumbling from ocean 
trenches could be sign that Japan faces mega earthquake





11 May, 2015

Researchers in Japan have for the first time detected and traced shallow tremors under the ocean that could be a sign that the country is heading towards a huge earthquake. But the technique itself may one day help us predict exactly when such an event would take place, which could save thousands of lives.
Japan still has the devastating 9.0 magnitude, megathrust earthquake in Tohoku in fresh memory, which produced a powerful tsunami and killed nearly 16,000 people when it hit in 2011. It is therefore no wonder that Japanese researchers are the first to detect weak signals of seismic activity.

Devastation following the 2011 earthquake and tsunami in Japan. EPA

Japan already has the most powerful seismic network in the world – and research institutions in the country are constantly growing it. Ocean Bottom Seismometers, which measure motion under the sea, have greatly facilitated these efforts by listening to the “rumbling” that is created when two tectonic plates meet. Such instruments have helped detect low-energy, “slow earthquakes” along oceanic trenches that we otherwise wouldn’t notice.

These earthquakes, which we know are produced deep under the famous San Andreas fault, preceded the Tohoku Earthquake. They occur much more slowly than standard earthquakes. If they are associated with the underground movement of magma and hot water but they are not related to volcanoes, they are knows as “non-volcanic tremors”. By comparison, big earthquakes are caused by the rupture of faults and give rise to short-lived, high-energy seismic waves.

Slow-slip earthquakes and tremors don’t cause any damage on their own. However, if they coincide with very-low-frequency earthquakes they can. These are another type of slow earthquake that is caused by processes deeper down under ground than tremors and usually indicate fault motions near the dangerous area where the tectonic plates meet. If all these types of slow earthquakes take place, along the faulted zone at different depths, they could be a sign we are near to a mega-thrust earthquake.

The researchers – who investigated the Kyushu Palau Ridge, southeast of Kyushu – have, for the first time, been able to detect and map shallow tremors in correlation with the other kinds of slow earthquakes. Even more importantly, they have showed what direction all these events are moving in. This kind of detailed knowledge of seismic activity is considered one of the most reliable ways of predicting big earthquakes.

Warning signs

What the study found out is that the waves produced by all these quiet earthquakes consistently migrated north along the ridge. The movement abruptly ended at the limit of the trench, where it was blocked by a so-called locked zone – where friction keeps the two plates together so they can’t slip – where previous mega-thrust events have occurred. After this, the waves travelled east.

This does not look promising, as to avoid a mega-thrust earthquake you’d prefer the slow quakes to stay in a locked zone, where the stress caused by them can be released and the movement can fizzle out. In this case, however, they are probably causing the coupling between the two plates to weaken, which is expected before a mega-thrust event.

The study, which was published in Science on May 7, shows that shallow slow earthquakes may therefore become a reliable way of detecting when and where the next mega earthquake will strike. This can be done by deploying ocean bottom seismometers along different trenches. In that way, we could detect the pattern of earthquakes in various places so that they would become an exact marker of when any mega-thrust earthquake strikes under the ocean, often causing a tsunami as well.

"
"Deploying an ocean bottom seismometer. Yusuke Yamashita, ERI, Univ. of Tokyo, Japan

The next such earthquake could strike the coast of Kyushu, a region well known for its dangerous volcanoes. Let’s hope that, by then, we have come far enough to prevent the same devastation as we saw in 2011. No place is better than Japan to drive such technological progress.


5/08/2015 -- 11 Large volcanic eruptions in 1 day! Sakurajima Volcano in Japan





Dutchsinse

May 8, 2015 - 11 separate large blasts occurred at Sakurajima Volcano on mainland South Japan in just one days time.

Over 30 minutes of eruptions compiled from the day. 7 daytime eruptions, and 4 eruptions after dark. Then the feed was CUT by the Japanese webcam host! 


This is like 2011 all over again, multiple large eruptions at Sakurajima means pressure is building in the region. Sakurajima is like a pressure gauge on the Pacific plate, when we see Sakurajima show major activity, we can expect large earthquake activity to follow in nearby adjacent areas just to the North and just to the South of this location in Japan.


These 11 eruptions were recorded via video capture from the streaming webcams provided by the University of Tokyo, and the JSA.


You can watch (record) your own videos of this volcano using the webcams on http://www.volcanodiscovery.com 


This new volcanic activity comes on the heels of multiple large earthquakes in the West Pacific, the announcement that a dormant volcano near Tokyo (silent for 800 years) is coming to life, and with a new Eruption in the Philippines. 


All this happened after deep movement in the Asthenosphere below the West Pacific.


Studies (and tests in the field) have been done which prove Asthenosphere movement (deep below the plate) causes shallow movement upon the plate above.


When the deep movement occurs, it displaces a larger region above the epicenter, the magma chambers located between the Asthenosphere, and the crust are also displaced, which then produces earthquake + volcano activity.
See more on the deep asthenosphere findings here:


http://phys.org/news/2015-02-north-am...


Expert warns Japan has entered ‘era of great quakes and eruptions’ – volcanoes stirring across Japan



Nicaragua’s Telica Volcano dusts town with ash – 30 eruptions reported after 8 year hiatus










Hundreds evacuated as Indonesia’s Karangetang volcano violently erupts in N. Sulawesi

No comments:

Post a Comment

Note: only a member of this blog may post a comment.